Crystal Structures of the Transcriptional Repressor RolR Reveals a Novel Recognition Mechanism between Inducer and Regulator

نویسندگان

  • De-Feng Li
  • Ning Zhang
  • Yan-Jie Hou
  • Yan Huang
  • Yonglin Hu
  • Ying Zhang
  • Shuang-Jiang Liu
  • Da-Cheng Wang
چکیده

Many members of the TetR family control the transcription of genes involved in multidrug resistance and pathogenicity. RolR (ResorcinolRegulator), the recently reported TetR-type regulator for aromatic catabolism from Corynebacterium glutamicum, distinguishes itself by low sequence similarities and different regulation from the previously known members of the TetR family. Here we report the crystal structures of RolR in its effector-bound (with resorcinol) and aop- forms at 2.5 Å and 3.6 Å, respectively. The structure of resorcinol-RolR complex reveal that the hydrogen-bonded network mediated by the four-residue motif (Asp94- Arg145- Arg148- Asp149) with two water molecules and the hydrophobic interaction via five residues (Phe107, Leu111, Leu114, Leu142, and Phe172) are the key factors for the recognition and binding between the resorcinol and RolR molecules. The center-to-center separation of the recognition helices h3-h3' is decreased upon effector-binding from 34.9 Å to 30.4 Å. This structural change results in that RolR was unsuitable for DNA binding. Those observations are distinct from that in other TetR members. Structure-based mutagenesis on RolR was carried out and the results confirmed the critical roles of the above mentioned residues for effector-binding specificity and affinity. Similar sequence searches and sequence alignments identified 29 RolR homologues from GenBank, and all the above mentioned residues are highly conserved in the homologues. Based on these structural and other functional investigations, it is proposed that RolR may represent a new subfamily of TetR proteins that are invovled in aromatic degradation and sharing common recognition mode as for RolR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The TetR-type transcriptional repressor RolR from Corynebacterium glutamicum regulates resorcinol catabolism by binding to a unique operator, rolO.

The rol (designated for resorcinol) gene cluster rolRHMD is involved in resorcinol catabolism in Corynebacterium glutamicum, and RolR is the TetR-type regulator. In this study, we investigated how RolR regulated the transcription of the rol genes in C. glutamicum. The transcription start sites and promoters of rolR and rolHMD were identified. Quantitative reverse transcription-PCR and promoter ...

متن کامل

Structure of the transcriptional regulator LmrR and its mechanism of multidrug recognition.

LmrR is a PadR-related transcriptional repressor that regulates the production of LmrCD, a major multidrug ABC transporter in Lactococcus lactis. Transcriptional regulation is presumed to follow a drug-sensitive induction mechanism involving the direct binding of transporter ligands to LmrR. Here, we present crystal structures of LmrR in an apo state and in two drug-bound states complexed with ...

متن کامل

Structural basis of the mercury(II)-mediated conformational switching of the dual-function transcriptional regulator MerR

The mer operon confers bacterial resistance to inorganic mercury (Hg(2+)) and organomercurials by encoding proteins involved in sensing, transport and detoxification of these cytotoxic agents. Expression of the mer operon is under tight control by the dual-function transcriptional regulator MerR. The metal-free, apo MerR binds to the mer operator/promoter region as a repressor to block transcri...

متن کامل

Crystallization and preliminary X-ray diffraction studies of the transcriptional repressor PaaX, the main regulator of the phenylacetic acid degradation pathway in Escherichia coli W.

PaaX is the main regulator of the phenylacetic acid aerobic degradation pathway in bacteria and acts as a transcriptional repressor in the absence of its inducer phenylacetyl-coenzyme A. The natural presence and the recent accumulation of a variety of highly toxic aromatic compounds owing to human pollution has created considerable interest in the study of degradation pathways in bacteria, the ...

متن کامل

Molecular mechanism and structure of the Saccharomyces cerevisiae iron regulator Aft2.

The paralogous iron-responsive transcription factors Aft1 and Aft2 (activators of ferrous transport) regulate iron homeostasis in Saccharomyces cerevisiae by activating expression of iron-uptake and -transport genes when intracellular iron is low. We present the previously unidentified crystal structure of Aft2 bound to DNA that reveals the mechanism of DNA recognition via specific interactions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011